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An electromagnetic solenoid was developed to study the effect of magnetic fields on electron
thermal transport in laser plasmas. The solenoid, which is driven by a pulsed power system suppling
30 kJ, achieves magnetic fields of 13 T. The field strength was measured on the solenoid axis with
a magnetic probe and optical Zeeman splitting. The measurements agree well with analytical
estimates. A method for optimizing the solenoid design to achieve magnetic fields exceeding 20 T
is presented.

PACS numbers:

I. INTRODUCTION

Magnetic fields play a significant role in the physical
behavior of plasmas relevant to Inertial Confinement Fu-
sion (ICF), such as those produced at the National Ig-
nition Facility (NIF)[1]. Specifically, magnetic fields ef-
fect electron heat transport within the plasma[2]. The
properties of heat transport are of particular importance
in understanding the spatial temperature dependence in
ICF plasmas[3].

In 1933 Francis Bitter developed an electromagnet
made from copper discs[4]. Each disc is a small (5 mm
inner radius) circular ring with a 33 degree cutout. An
insulating material was cut to the same dimension as the
copper, and the solenoid was assembled in a stair-step
fashion. Each disc was isolated from the next by an in-
sulator, except in the region of the cutout. Electrical
contact was made by tightly compressing the coil, allow-
ing current to flow in the loops established by the over-
lapping regions and producing magnetic fields exceeding
20 T.

In order to investigate the inhibition of electron heat
transport in laser-produced plasmas, magnetic fields
greater than 10 T are necessary[5, 6]. While the conven-
tional Bitter electromagnet is capable of producing such
fields, the operating environment of laser experiments de-
mands that numerous modifications be made. Two modi-
fied Bitter electromagnets were constructed in series, and
access ports allow us to measure the local high magnetic
fields, field diagnostics, propagate the laser beams, and
insert the gas jet (Figure 1). The gas injected by the jet
into the solenoid requires isolation of the high currents.
We present an electromagnet design that has produced
successful results in a laser-produced gas jet plasma at
field strength of 13 T.

The laser experiment performed at the Janus Laser
Facility, Lawrence Livermore National Laboratory, em-
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FIG. 1: The schematic for the laser setup is shown. A 12 mm
gap between the coils allows access to the region with high
magnetic fields. The system has been optimized to provide
high fields directly between the coils where the laser beams
cross.

ployed a gas jet to deliver N2 gas that is heated by a high
power (1 ns) laser beam with 100 J of 1 ω (1053 nm) light
in the presence of an external magnetic field. Imaging
Thomson Scattering[7] with 500 mJ of 2 ω light is used to
spatially resolve the electron temperature profile perpen-
dicular to the laser beam[8, 9]. A Rogowski dI/dt probe
measures the current through the solenoid, and is cali-
brated to determine the magnetic field strength. It was
found that when fields above 10 T are applied along the
laser beam axis the electron thermal transport and the
peak electron temperature are strongly affected[9]. These
results have demonstrated that the present solenoid de-
sign allows controlled laser-plasma experiments with a
known magnetic field strength.

Section II of this paper discusses the magnet used
in the laser experiment, including a description of the
solenoid construction and the pulse power system used
to drive the high magnetic fields. Section III presents
a general prescription for designing and optimizing the
solenoid. Section IV summarizes our results.
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FIG. 2: (a) The coils are constructed by welding the ends of
each disc. Two coils are separated by a 12 mm gap. (b) The
coils are cast in high voltage epoxy for strength and to isolate
all electrical surfaces from the experimental environment.

II. MAGNETIC FIELD GENERATION

A. Solenoid Construction

Figure 2 shows the coil parts and the assembled
solenoid used in the laser experiment. The magnet con-
sists of 2 coils, each having 41 discs 0.5 mm thick with
2.3 cm inner and 4.6 cm outer radii. A 33 degree wedge
was cut in each disc, and neighboring discs were butt-
welded together forming continuous coils (Figure 2). Be-
tween each disc a 127 µm thick Kapton insulator was
inserted. These were arranged with overlapping ends
to prevent arcing between neighboring discs. The two
identical 41 disc coils were joined by a strip of copper
spanning a 12 mm gap between them, as illustrated in
Figure 2a. Electric cabling is bolted to each end of the
solenoid to supply current.

The experiment takes place in a vacuum of order
10−4 Torr. At shot time, the effective pressure inside the
solenoid increases to about 1 Torr as the gas jet is fired
20 ms prior to the laser. Under these conditions, the elec-
trical break-down potential is very low. Therefore, great
care was taken to shield all conducting surfaces from the
gas. The solenoid was placed inside a 4.5 inch outside
diameter lucite shell, with a 1 inch inner diameter lu-
cite cylinder inserted through the bore (the lucite wall
thickness is 0.25 inches). Aluminum endcaps with 0.25
inch stainless steel rods hold the solenoid together, and
Emerson and Cumming Stycast 1266 high voltage epoxy
(500 kV/mm electrical standoff) is poured to fill the lu-
cite shell as shown in Figure 2b. Optical ports are then
machined in the central gap to allow diagnostic access.

B. Pulse Power System

1. LRC Pulse Power Circuit

Figure 3 shows the schematic for the pulse power sys-
tem that delivers current to the magnet. Three capaci-
tors (C = 48 µF) are wired in parallel; two knife switches
allow the selection of one, two, or all three capacitors. A
resistor (R = 1.5 Ω) is placed in series with each capacitor

Oscilloscope

Rogowski Coil

FIG. 3: The schematic for the pulse power system used to
drive the solenoid. At maximum charge and with all three
capacitors engaged 28.8 kJ are produced.

to damp the system. The current through the solenoid
(inductor) is given by an LRC differential equation.

In our case L > 1
4CR2, so the system is weakly damped

and may be described by

I(t) =
V0e

−t/τ

ωL
sin(ωt) (1)

where ω =
√

1
LC − ( R

2L )2, τ = 2L
R , V0 is the initial charge

voltage, and L = 140 µH as measured with a kHz induc-
tance meter.

The current (I) through the system is measured with a
Rowgowski dI/dt probe on the cable returning to ground
in the pulse power capacitor bank. When all three capac-
itors are fully charged (V0 = 20 kV), the system delivers
a peak current of I = 13 kA. The measured current agrees
well with Equation 1 for C = 144 µF, L =144 µH, and R
= 662 mΩ, as shown in Figure 4. These are reasonable
values given approximately 5 µH of system inductance,
10 mΩ of system resistance, 150 mΩ of solenoid resis-
tance, and negligible system capacitance.

2. Capacitor Bank

The desired charge voltage is set on a Glassman
FX20P15 High Voltage Power System capable of supply-
ing up to 20kV. A Ross High Voltage Dump Relay (k1)
prevents the capacitors from charging or retaining charge
when the dumps are engaged. The switching mechanism
that allows current to flow between the bank and the
solenoid is an NL8900 ignitron. An SCR Trigger Chassis
takes in a TTL trigger and produces a high voltage pulse,
which initiates the switching of the ignitron. The trig-
ger transformer isolates the SCR from the pulse power
system.
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FIG. 4: Current traces from time-integrated Rogowski signals
compared with calculations using Equation 1 for V0 = 20kV,
16kV, and 6kV.

C. Field Characterization

1. Pickup Probe

To characterize the magnetic field along the axis of the
solenoid a 10 turn, 1.5 mm diameter pickup probe was
constructed and calibrated. Figure 5a shows the mea-
sured magnetic field strength between the coils (z = 0)
for a maximum capacitor charge of V0 = 20 kV as com-
pared with the results of Equation 2. Figure 5b shows
the peak magnetic field recorded along the solenoid axis
for a constant capacitor charge (V0 = 1 kV).

The magnetic field produced along the axis of the
solenoid (z) is given by[10]

B(t, z) = I(t)G(z) =
I(t)µ0N

4l
(

z + l + d
2

√

r2 + (z + l + d
2 )2

−

z + d
2

√

r2 + (z + d
2 )2

+
z − d

2
√

r2 + (z − d
2 )2

−
z − l − d

2
√

r2 + (z − l − d
2 )2

)(2)

where r=2.3 cm is the inner disc radius, d=12 mm is the
distance between the coils, N=72 is the total number of
turns, and l=2.26 cm is the length of each coil. Figure 5b
compares the calculated magnetic field profiles with the
measurements.

2. Zeeman Splitting

The magnetic field produced between the coils is mea-
sured with Zeeman splitting through observing a split
in atomic energy levels. Figure 6 shows the measured
Zeeman spectrum for a V0 = 16 kV charge. The field
strength increases linearly with increasing current (Fig-
ure 7), and the results are consistent with Equation 2
when substituting for the peak current calculated using
Equation 1.
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FIG. 5: (a) The magnetic field is measured at the center of the
solenoid using a pick-up probe. (b) The magnetic field along
the axis of the solenoid shows a maximum field inside the coils
and a slight dip in the profile between the coils. Equation 2
is plotted on both plots using the parameters of our system.

The measurement is made using an Oriel Ne spectral
lamp placed inside the solenoid. The emission is collected
through the central gap with an f/5 collection optic. The
light is imaged through a 100 µm slit into a 1-m spectrom-
eter with an f/4 lens. Using an 1800 lines/mm grating to
measure a Neon line at 585.25 nm results in dispersion of
0.555 nm/mm. A 1 µs gated CCD records the spectrum
corresponding to the peak current through the solenoid.

An externally applied magnetic field will split degen-
erate atomic energy levels according to their angular mo-
menta and the applied field strength. This corresponds
to a shift in wavelength in the emission spectra given by

∆λ =
λ2

0eB

2πcM
(3)

where λ0 is the central wavelength, e is the charge of the
electron, and M is the mass of the electron.

III. MAGNETIC FIELD OPTIMIZATION

The strength of the magnetic field produced by a
solenoid is separable into the product of a time dependent
current and a spatially dependent geometry factor which
are coupled through the inductance. The inductance is
determined by the geometry, which effects the current
through a simple LRC system; therefore, the magnetic
field between two coils can be optimized by varying the
number of turns and the inner solenoid radius. The outer
radius does not affect the inductance, and should be cho-
sen with consideration to thermal mass and mechanical
strength. We will show that for a given loop thickness
and coil separation there are many combinations of the
number of turns and the inner radius that give the same
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FIG. 6: Zeeman spectra for V0 = 16 kV . Shows a wavelength
shift (∆λ = 0.33 nm) corresponding to a 10 T magnetic field.
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FIG. 7: The peak magnetic field is measured using a pick-up
probe (squares), and by Zeeman splitting (triangles). Linear
regressions of the data are included, and the data is compared
to Equation 2 (solid line).

solenoid inductance, but there is one unique combination
that maximizes the magnetic field. This section will de-
termine the coil configuration which optimizes the field
strength between the coils while keeping the field inside
the solenoid below the yield point of the construction
material.

A. Solenoid Inductance

Calculating the solenoid inductance as a function of
the number of turns and the inner solenoid radius will
allow us to optimize the current through the solenoid.
The mutual inductance between any two current carrying
loops of radius r is given by[10]

MAB(k) = 2µ0k
−1r[(1 −

1

2
k2)K(k) − E(k)] (4)

where k2 = 4r2[4r2 + c2]−1, c is the distance between the
centers of the loops, and K(k) and E(k) are the complete
elliptic integrals of the first and second kind, respectively.

The inductance of a solenoid is the sum of all the mu-
tual inductances between each pair of loops,

L(N, r) =
∑

A

∑

B

MAB(km) = 2
N−1
∑

m=1

((N − m)M(km))

(5)
where k2

m = 4r2[4r2 + (mc)2]−1, N is the total number
of turns, m = B - A, and A is less than B. The magnet
design requires a separation (d) between the center two
turns which modifies the sum in the following way

L(N, r) = 2

N
2 −1
∑

m=1

((N − 2m)M(km)+

mM(k∗
m)) + 2

N−1
∑

m=N
2

(N − m)M(k∗
m) (6)

where (k∗
m)2 = 4r2[4r2 + (c(m − 1) + d)2]−1. For the

parameters in our experiment (N = 72, r = 23 mm, d
= 12 mm, and c = 627 µm) the inductance is calculated
by Equation 6 to be 132 µH, which agrees well with the
measured value of 140 µH.

B. Magnetic Field Calculation

The current through an LRC system is a function of
the charge voltage, capacitance, resistance, and induc-
tance. A critically damped LRC system produces a time
dependent current,

I(t) =
V0

L(N, r)
te−

Rt
2L(N,r) (7)

where the resistance is chosen such that R2 = 4L
C .

Substituting the peak current generated by a critically
damped LRC circuit normalized by the total stored en-

ergy
(

Jpeak =
Ipeak√

E
=

√

2
e2L(N,r)

)

into Equation 2, the

magnetic field between the coils (z=0) can be expressed,

H(N, r) = JpeakG(0) =

√

2

e2L(N, r)
×

µ0N

2l
(

l + d
2

√

r2 + (l + d
2 )2

−
d
2

√

r2 + (d
2 )2

) (8)

where H = B√
E

is the normalized magnetic field strength

and E = 1
2CV 2

0 is the stored energy in the system.
An optimal solenoid design is determined by maximiz-
ing Equation 8.
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C. Solenoid Optimization

There are four geometrical parameters that determine
the magnetic field strength produced by a solenoid: the
coil separation, turn spacing, number of turns, and in-
ner solenoid radius. This section will discuss optimizing
the solenoid design in terms of these parameters, their
influence on the inductance, and the yield point of the
solenoid material (approximately 30 T for copper).

1. Magnetic Field Strength

Figure 8 is a contour plot of Equation 8 and gives
the magnetic field as a function of radius and number
of turns between the coils for a critically damped system
with c=627 µm, d=12 mm, and 4 µH of system induc-
tance. It shows the optimal solenoid design (N=26 turns,
r=8.6 mm), which requires a peak normalized current of

3.8kA/
√

kJ . On our system (E=28.8kJ) this corresponds
to a maximum magnetic field of Bpeak(z = 0)=16 T while
producing a B=23 T field inside the solenoid. Increas-
ing the current by either reducing the system resistance
(allowing the system to be underdamped, resulting in a
current gain given by Figure 9) or by increasing the stored
energy will increase the optimal magnetic field strength.
This optimization is valid until the magnetic pressure
inside the solenoid exceeds the yield point of the con-
struction material. For copper coils, this corresponds to
a magnetic field of 30 T.

The Lorentz force is given by F=qv×B. The current
in our application is azimuthal and the magnetic field is
axial, so the force acts radially. In the case of an ideal
solenoid this becomes F = N2πrIB; substituting I =
Bc
µ0

, where c is the turn thickness, and dividing by the

inner surface area of the solenoid provides the magnetic
pressure acting on the inner wall and can be calculated

as P = B2

µ0
.

2. Material Strength Considerations

For a system that can produce fields large enough to
exceed the yield point of the material used to construct
the coils, the optimal magnetic field between the coils is
not given by maximizing Equation 8. Figure 8 (black
curves) shows that there are several combinations of the
number of turns and radius that produce the same peak
current; there is a single point on each curve that maxi-
mizes the geometry factor (G(z)) in Equation 8 and pro-
duces a maximum magnetic field (Fig. 8, Orange Line).
This can be shown to follow the relation,

r = 0.11N + 5.81 (9)

where r is in millimeters, and can be analytically veri-
fied in the limit of large numbers of turns. The optimal
solenoid geometry will now correspond to a point on this
line.

Figure 10 shows the strength of the magnetic field be-
tween the coils and the maximum field experienced inside
the solenoid along the optimal line defined by Equation 9.
Scaling the stored energy so that the peak field inside the
solenoid (dashed curve) is 30 T corresponds to 50 kJ of
stored energy and a peak field between the coils (dotted
curve) of 20 T. This defines an optimum design for any
critically damped system with a stored energy E≤50kJ.
In order to access fields greater than 20 T between the
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(dashed) along the optimal line defined by Equation 9. The
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imum field possible between the coils.

coils the system must either be underdamped or capa-
ble of storing more than 50 kJ. This forces the selection
of a solenoid geometry providing a higher ratio of field
strengths (Fig. 10 solid curve).

In this regime, our goal is to maximize the field
strength between the coils without the field inside exceed-

ing the yield point of the construction material. Selecting
a ratio of field strengths defines the system geometry and
the maximum magnetic field possible between the coils.
The required stored energy can then be determined such
that the field inside the solenoid reaches the yield point;
the stored energy can be reduced by reducing the re-
sistance of the LRC circuit, thereby increasing the the
current.

IV. CONCLUSION

A solenoid is constructed from two coils in series with
a gap between them to allow access for a laser plasma
interaction experiment. The field between the coils has
been designed to be greater than 10 T using a stored
energy of 30 kJ. An analytical model has been presented
that agrees well with the magnetic field measurements
along the solenoid axis.

We have expanded this model to show that for systems
with less than 50 kJ of stored energy there is an optimal
solenoid design, limited by the material strength of cop-
per, providing a 20 T field between the coils. To achieve
fields greater than this threshold, the optimal design is
chosen by the total stored energy.
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